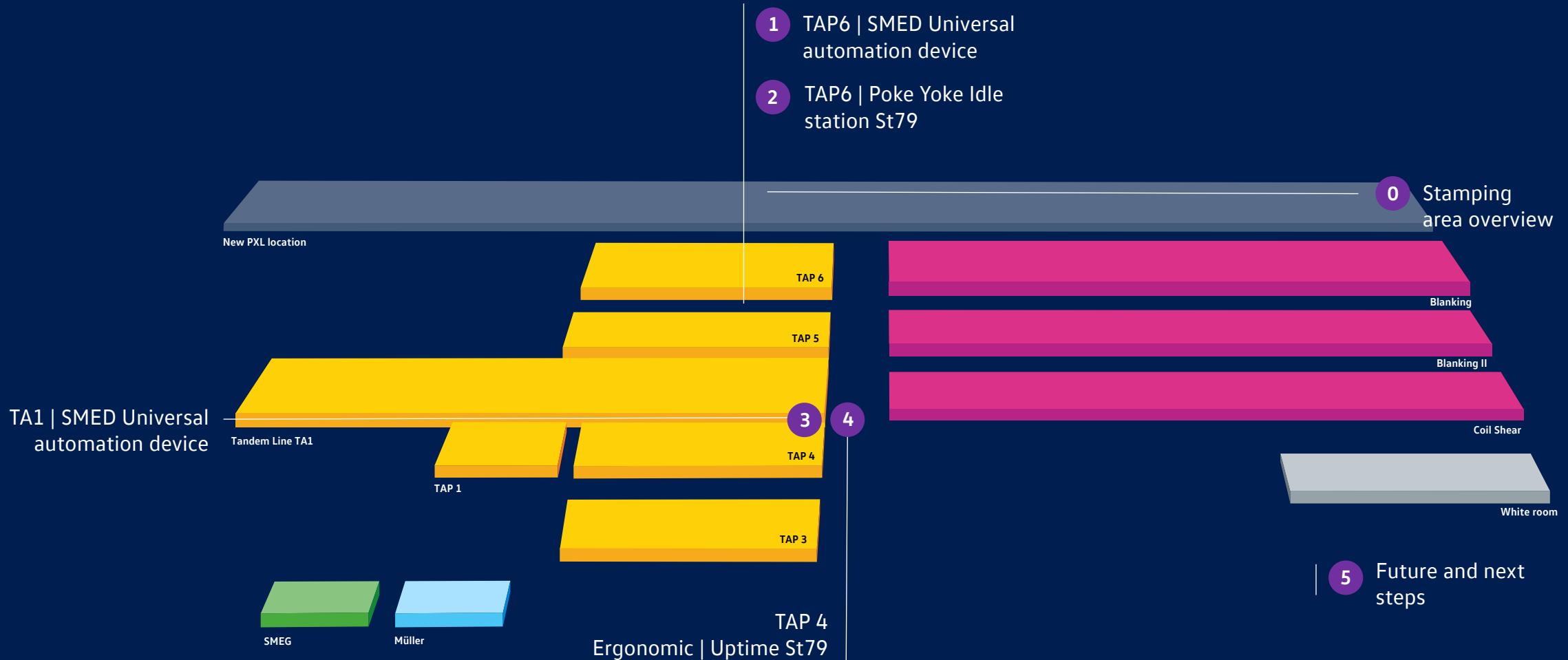


Automotive Lean Production Award Best Practices catalogue 2023

FACTORY | Warehouse invento

All the Best Practices are available in
web optimized versions accessible
through QR-codes via mobile devices.
**The stickers are located in the
walkaround hotspots near the target-
area of the respective measure.**



FACTORY

| Stamping
Walkaround

SMED

Die Change: destacker universal automation device

Before

After

Description

- Automation device for each part number
- Universal automation for all part numbers

Facts	
Stamping	Tandem 1
Saving	Die change time 3 min
Investment	3 000€
Implementation date	June 2023

Results and improvements

Reduce die change time 2 min (8%). Reduce operational complexity. Cost reduction (8.000€/year)

SMED

TAP6 | Poke Yoke Idle station St79

Before

After

Description

- Fix plates with screws
- Fast coupling

Facts	
Stamping	TAP 5/6 2
Saving	Die change time 1 min
Investment	2 500€
Implementation date	January 2023

Results and improvements

Reduce die change time 1min (5%). Reduce maintenance stoppages: Lifters system (930min/year). Reduce complexity Poke-Yoke implemented.

SMED

TA1 | Universal automation device

Before

After

Description

- 3 different types of automation devices for 9-part numbers
- Only one automation device for all parts

Facts	
Stamping	TAP 5/6 3
Saving	Die change time 1min
Investment	550€
Implementation date	March 2023

Results and improvements

Reduce die change time 1min (5%). Improve the ergonomic condition of operators. Reduce material costs and preventive maintenance (30%).

TAP4

Ergonomic | Uptime St79

Before

After

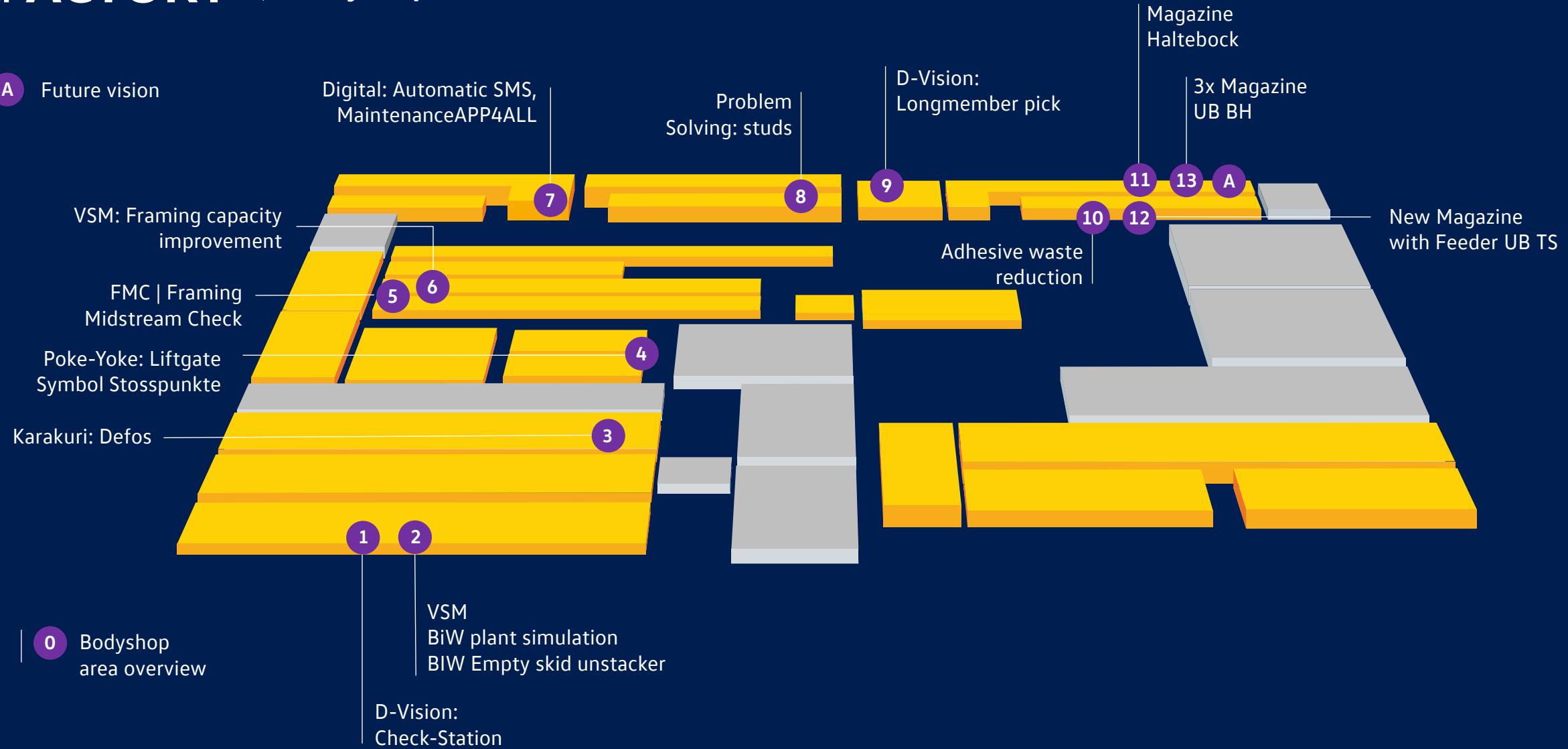
Description

- Automation device for each parts number
- The hydraulic cylinder used to rotate the jigs was small and did not guarantee the final position
- In production it's vibrating a lot with the operation of the press.
- Jigs had to be assembled after the Dies were already inside the press to fit
- Universal automation for all part numbers
- Larger hydraulic cylinders were installed, to guarantee the final position
- That allow the jigs to be assembled on the tables even before they enter the Press.

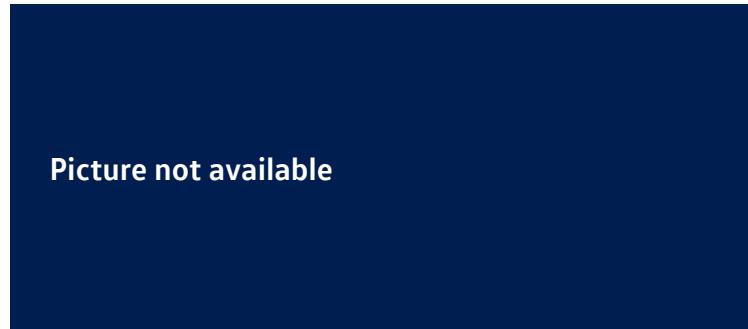
Results and improvements

Ergonomic and shorter time for Die changes (4 min). More stability of the jigs during press operation

Facts	
Stamping	TAP 4 4
Saving	N/A
Investment	N/A
Implementation date	2023


FACTORY

Bodyshop
Walkaround


A Future vision

D-Vision Body Check Station

Before

Picture not available

After

Description

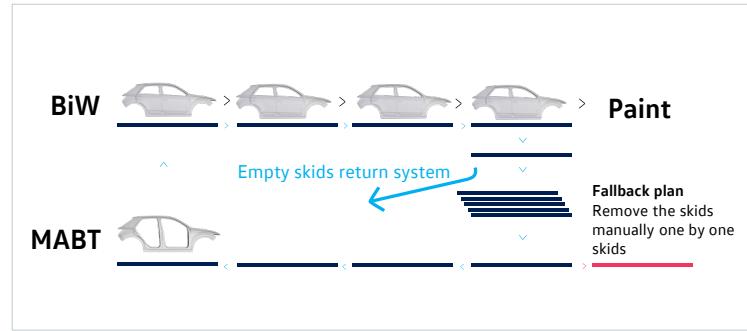
- Each single body model's characteristics had to be visually checked by the Operators of the Metal Finish Line's, before going to the Buy-Off of Paint shop.
- Installation of a Checking station with cameras to detect all the body characteristics of the several options available (RHD/LHD, roof racks, Open roof).
- The detection is done through the digital image and the uses of a special software that compares the current body features with the customer order data.

Results and improvements

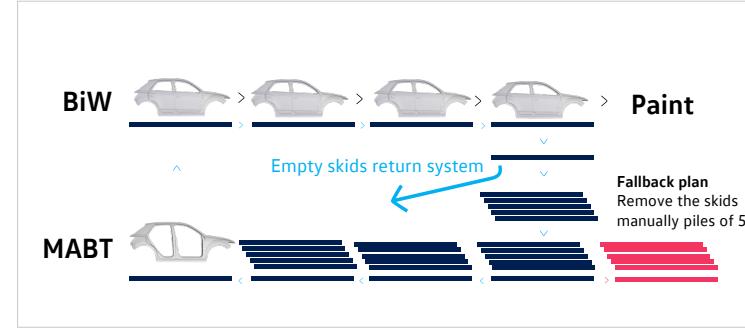
This system eliminates the possibility that mistakes contaminate the production beyond the Bodyshop.

Avoids order amendments and delayed vehicles.

	Facts
Area	Bodyshop 1
Saving	N/A
Investment	21T €
Implementation date	2021



New Empty Skid Unstacker


BiW empty skid buffer increase

Before

After

Description

- The BiW (Body in White) buffer supply P100 with bodies.
- If the system is full, the return of empty skids stops.
- The P100 cannot release the empty skid, and the production feed to Paint stops.
- Install a new unstack system to increase empty skid storage by 35.

Results and improvements

The improvement will increase the flexibility of the line and will increase P100 uptime by 1,1% (currently 96%).

	Facts
Area	Bodyshop 2
Saving	1,1% uptime improvement
Investment	125T €
Implementation date	2023

Karakuri Bodyshop

DTB 1 | Defos Jig part's car

Before

After

Description

- The operators needed to pick parts from line side every cycle.
- With the speed increase (45JPH) this station could not reach the capacity with only one operator per side (8MA). Risk to have to add 8MA.
- Trilogiq car and structure was developed to be connected directly to the jig.
- The parts "follow" the car, always at best reach.
- Hood Hinge; Front + rear Defo; Strebbe; screws

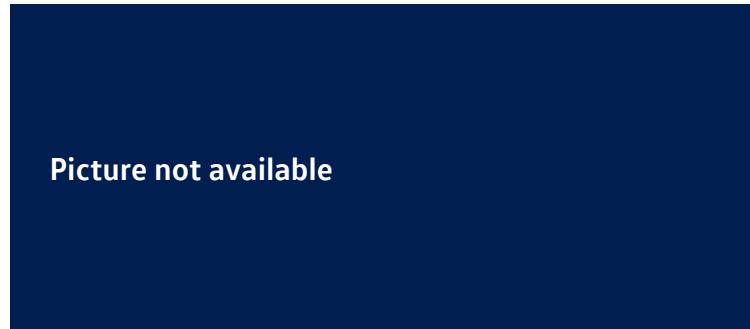
Results and improvements

With the parts being available directly in the reach of the operators, the time for the station reduced.

The target of productivity was reached (no increase of manpower).

This improvement also had a positive impact on ergonomics.

	Facts
Area	Bodyshop 3
Saving	Avoidance 8MA (45JPH)
Investment	Est.€2.000
Implementation date	2022



Poke-Yoke Bodyshop

LTG Symbol rotation

Before

Picture not available

After

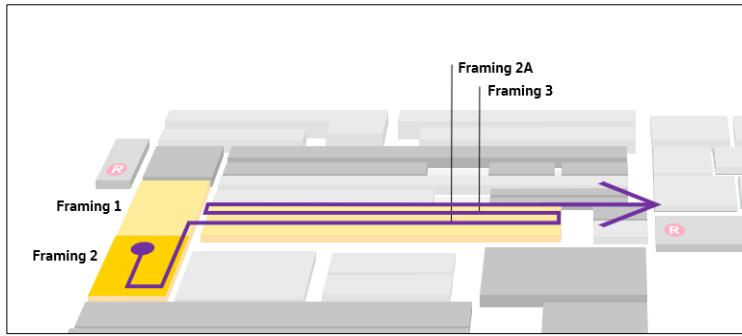
Description

- The symbol bracket position was only assured in the Paintshop oven, where the structural glue cured.
- Due to the manual handling operations during the construction process, there was a risk of rotating the symbol bracket unintentionally.
- Add a Weld point in the stosspunkten station

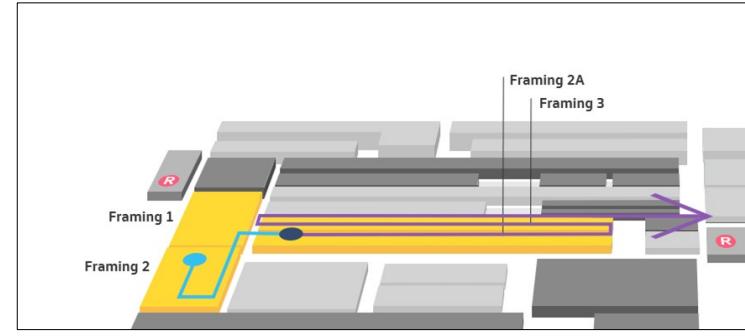
Results and improvements

This improvement created a welding fix between the two parts, making it impossible to create rotation between them and cause a problem.

Facts	
Area	Bodyshop 4
Saving	N/A
Investment	N/A
Implementation date	2022


Inline Measurement

FMC | Framing Midstream Check



Below
30 hours

Before

After

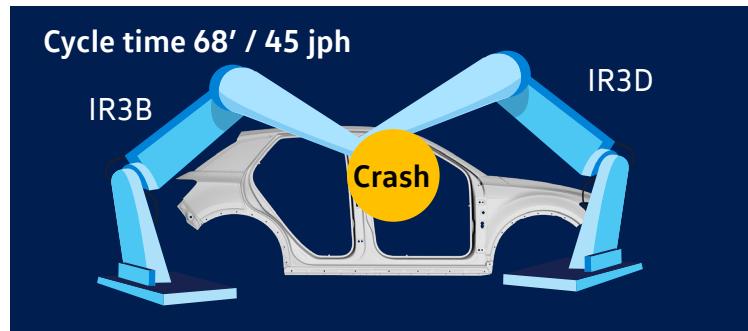
Description

- Not possible to detect problem before perceptron (120 bodies later).
- In the event of a major deviation, the risk is high to contaminate the system with non-conform product downstream.
- Implement a new, in-house developed, comprehensive system (measure, alarm and report) to control the most critical dimensions for the Liftgate in the beginning of Framing 2A.
- Reduce the propagation risk by 66% (from 120 unchecked bodies to 40).

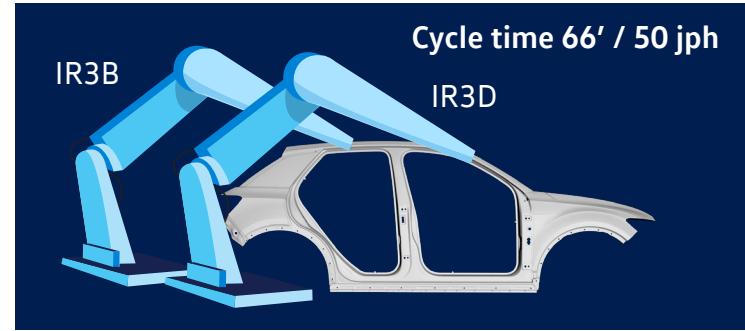
Results and improvements

Risk reduction of major reworks / Scrap

	Facts
Area	Bodyshop 5
Saving	Potential Risk reduction
Investment	€20.000
Implementation date	2023



Value Stream Management


Framing capacity improvement

Before

After

Description

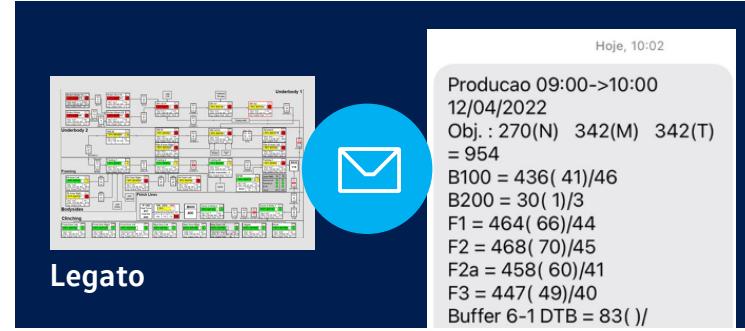
- Framing 3 is the Bodyshop bottleneck
- Stations near the 68'

- Increase Framing 3 capacity by reducing the cycle time:
- Improve robot to avoid anticollision protections.
- Optimization of "Bursten" polishing laser seam.
- Change and optimization of blades for tip-dressing.
- Optimization of welding parameters.

Results and improvements

Capacity Increase.

	Facts
Area	Bodyshop 6
Saving	N/A
Investment	N/A
Implementation date	2023


BOT SMS Report

Automatic SMS using SCADA Legato

Before

After

Description

- Production information (volume, stocks and buffers) were collected hourly by the area clerk and communicated to the Team Leaders and Supervisors
- Using Legato were all the information needed is available, it was created an hourly SMS report which is automatically sent to who needs

	Facts
Area	Bodyshop 7
Saving	-2 PJ
Investment	1,3T €
Implementation date	2021

Results and improvements

Increase transparency and management efficiency of the production lines.
Productivity reduction of 2 operators

Maintenance APP4ALL 1.0

Webpage browser @ BT/Operator Panels

Before

After

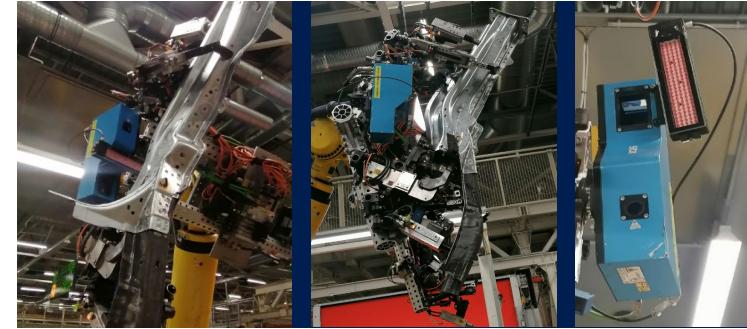
Description

- The search for a replacement part would take time to locate a PC, login, enter various platforms, search the part and pick it up in the warehouse where it is located. Took up to 30 minutes to search equipment/standby.
- Search directly in a web environment from an industrial PC. The app reads directly in the XML files with the data regularly updated from the various platforms like SAP, Maximo and others. Less 83% search time needed (Takes up to 5 minutes to search equipment/standby).

	Facts
Area	Bodyshop 7
Saving	N/A
Investment	600 €
Implementation date	2020

Results and improvements

Improve MTTR (Mean Time To Repair) KPI by reducing the equipment search time.


D-Vision

Longmember automatic pick from rack

Before

After

Description

- An operator loaded manually the parts, one-by-one.
- Ergonomically challenging station due to size and weight to be maneuvered
- Capacity installed was 37 JPH
- Installation of 2 cameras (one per robot).
- Installation of 2 logistic racks' bays for automatic line-feeding.

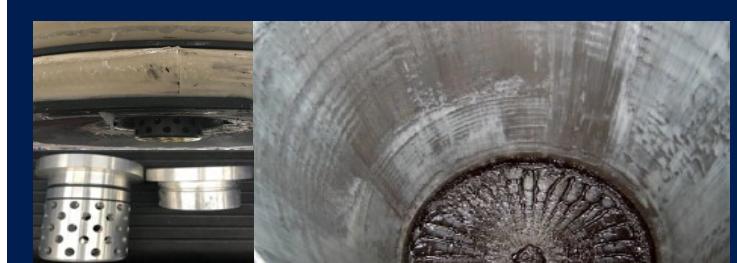
	Facts
Area	Bodyshop 9
Saving	-4PJ
Investment	27T €
Implementation date	2022

Results and improvements

After this upgrade, the line was able to reach 45JPH and manpower optimization. Additionally, the ergonomic concern was solved.

Adhesive Waste Reduction

Environmental Impact


Below
30 hours

Before

3,5 – 7L waste (remaining glue)

After

85,7% less waste (1L remaining glue)

Description

- The pump plate cannot go all the way down because it sucks the plastic bag into the pump and causes malfunctions. It had to be adjusted higher up, which meant more adhesive was wasted at the end of the barrel.
- The implementation of a perforated accessory in the pump plate prevents the plastic from entering and allows the sensor to be adjusted completely downwards, reducing adhesive waste. For the 25 Kg drums, an inhouse developed drilled pump plate was implemented.

Results and improvements

23 tons in waste reduction, big environmental impact.

	Facts
Area	Bodyshop 10
Saving	49T € (SGK cost reduction)
Investment	24T €
Implementation date	2022

Magazine Haltebock

Part feeding concept independent of line

Below
30 hours

Before

After

Description

- In station 321320 of the Boden Hinten Lines, we have a manual refill process done by one operator/Shift.
- Reload every 5 car.
- Implement a new magazine system with two feeder's, with 45 parts capacity each, to allow the operator to do some other tasks between refilling the station.
- Reload every 90 cars

	Facts
Area	Bodyshop 11
Saving	F-Zeit
Investment	€2.000
Implementation date	2022

Results and improvements

Reducing the frequency of parts feed to the line. Organization optimization potential.

Magazine with Feeder (TS)

Part feeding concept independent of line

Below
30 hours

Before

After

Description

- In station AFO 1340 of the TrägerSystem Lines, we have a manual refill process done by one operator/shift.
- Implement a new magazine system with feeder, with 12 parts capacity, to allow the operator to do some other tasks between refilling the station.

	Facts
Area	Bodyshop 12
Saving	-4 PJ (combined with Slicer/Magazine)
Investment	€54.000 (Combined with Magazine)
Implementation date	2022

Results and improvements

Reducing the frequency of parts feed to the line. Saving of manpower combined with slicer and Magazine improvements. Organization optimization potential.

Magazine

Part feeding concept independent of line

Below
30 hours

Before

After

Description

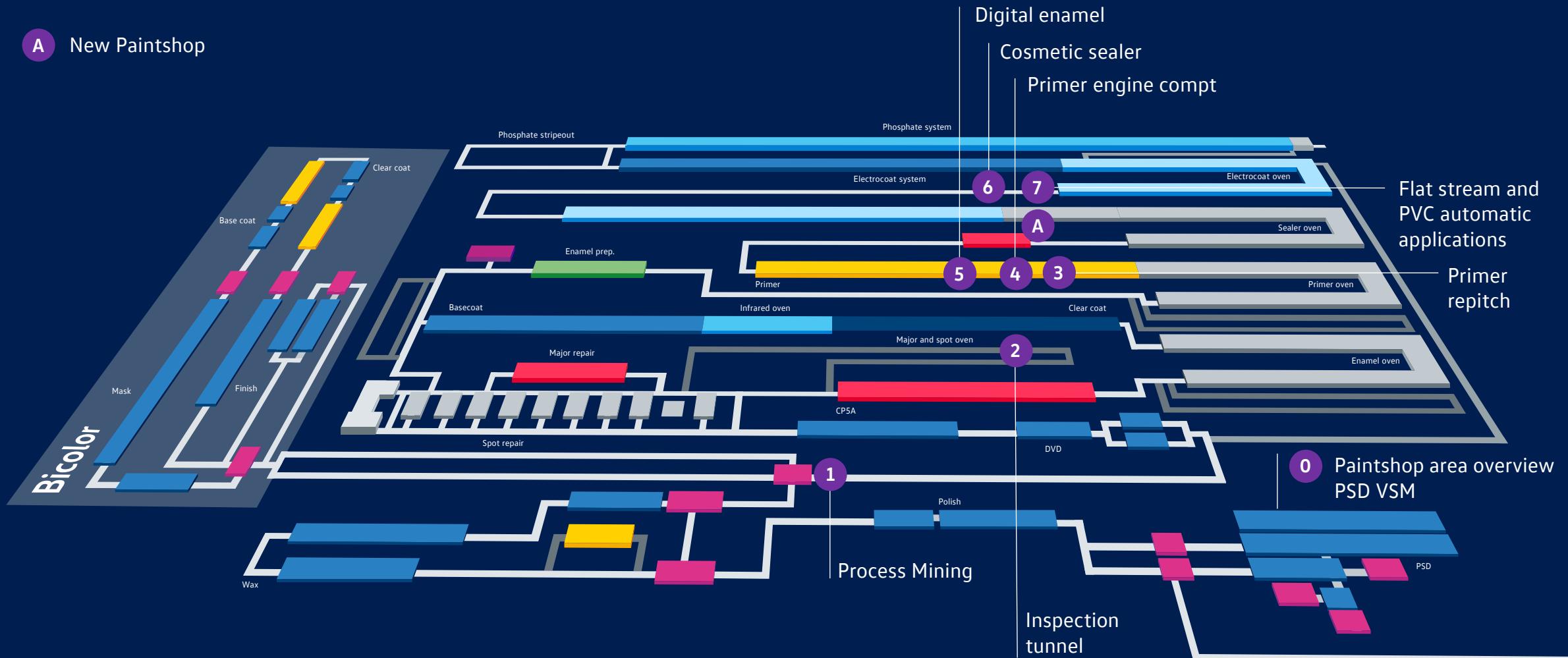
- Parts were fed manually to the automatic production lines in a K-Tec conveyor. The refill operation is required every 6 cycles.
- Installation of a vertical "parts magazine" to increase buffer stock and reduce the frequency to 100 cycles (3 per shift).

Results and improvements

Reducing the frequency of parts feed to the line. Saving of manpower combined with slicer and Magazine TrägerSystem improvements.

Organization optimization potential.

	Facts
Area	Bodyshop 13
Saving	-4 PJ (combined with Slicer/Magazine TS)
Investment	€54.000 (Combined with Magazine TS)
Implementation date	2022

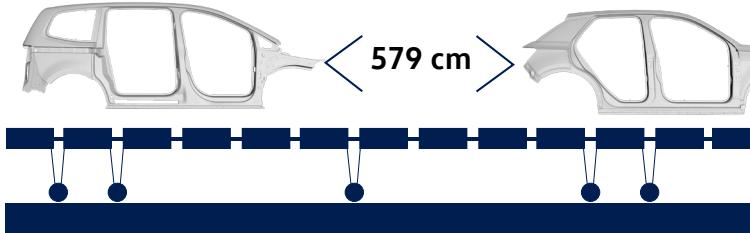

FACTORY

Paintshop
Walkaround

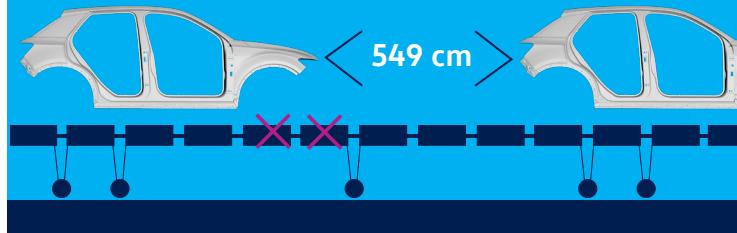
A New Paintshop

Primer oven repitch

Capacity increase



Below
30 hours


Before

Minimum process time 150°C, 14min | Cycle time 1,26 min/ 47 j/h

After

Same speed and cycle time 1,26 min. Minimum process time 150°C, 14min. 50 j/h

Description

- With MPV minimum distance between bodies 579 cm
- 887 units/day (93% up time)
- EOP of MPV allow to shortage distance between bodies by removing 2 links. Maintain same speed, cycle time
- 934 units/day (93% up time) normal run, up to 960 with tag relief in primer prep.

Results and improvements

Productivity and Increase capacity

	Facts
Area	Paintshop 3
Saving	--
Investment	0€
Implementation date	2023

Primer engine compt

Manual application deletion

Below
30 hours

Before

After

Description

- Manual primer applications leading to potential quality faults and reworks. Working stations with relevant ergonomic score (orange station) due to worker's position during the primer application.
- Need for TAG relief operation in primer line.
- In-house developed automatic primer application with increased quality output, reducing the needs of additional reworks. Improved ergonomic score (deletion of orange station). Workloads and line balance adjusted with increased productivity. Optimized application areas: Engine compartment; Hood

Results and improvements

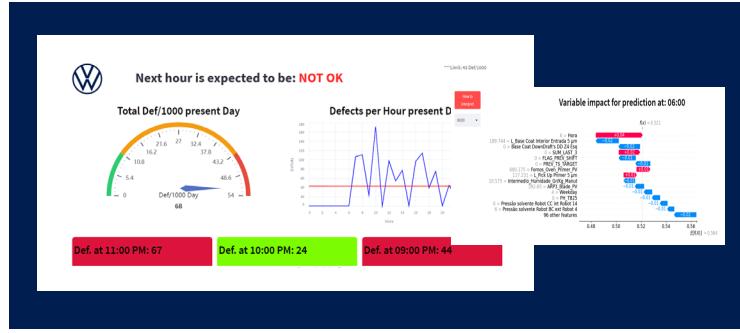
Productivity

	Facts
Area	Paintshop 4
Saving	12 MA/day
Investment	85 Tsd. €
Implementation date	2022-2023



Digital Enamel

Quality improvement



Before

No graphics available

After

Description

- Correlation was done manually between defects in CP5A and process inputs in clean room
- IA algorithm identifies the impact of each process input in the defects output

	Facts
Area	Paintshop 5
Saving	N/A
Investment	31K €
Implementation date	POC 2023 Full 2024

Results and improvements

Productivity and Increase capacity

Cosmetic sealer

Application automation

Below
30 hours

Before

After

Description

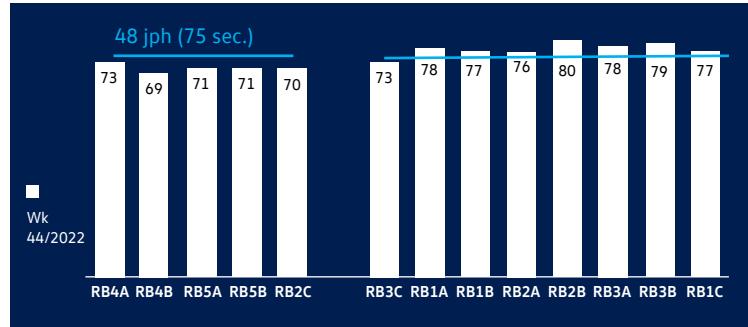
- Manual sealer applications were conducted for several processes leading to potential quality faults, reworks with added ergonomic impact due to lack of accessibility.
- In-house developed automatic application with increased quality output, reducing the needs of additional reworks. Improved ergonomic score. Optimized application areas: A/B/C Pillars; Doors; Hood; Liftgate; Sides; SBBR; Water box.

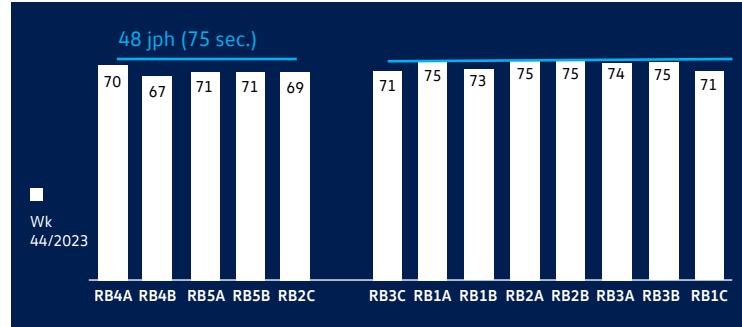
Results and improvements

Productivity Increase

	Facts
Area	Paintshop 6
Saving	40 MA/day
Investment	208,5K €
Implementation date	2023

Improve Capacity in Sealer line


Flat Stream automatic applications


Below
30 hours

Before

After

Description

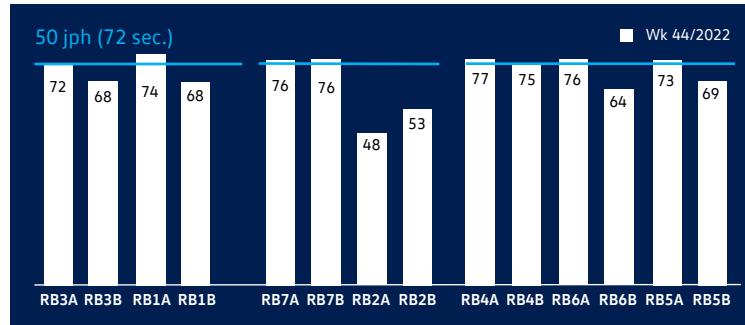
- Capacity 45 jph
- Optimizations "Balancing" applications
- Capacity improve 6% (48 jph)

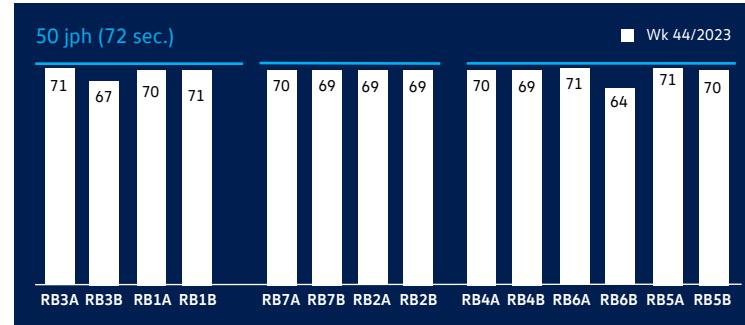
	Facts
Area	Paintshop 7
Saving	Capacity
Investment	0€
Implementation date	2022

Results and improvements

Productivity increase

Improve Capacity in Sealer line


PVC automatic applications


Below
30 hours

Before

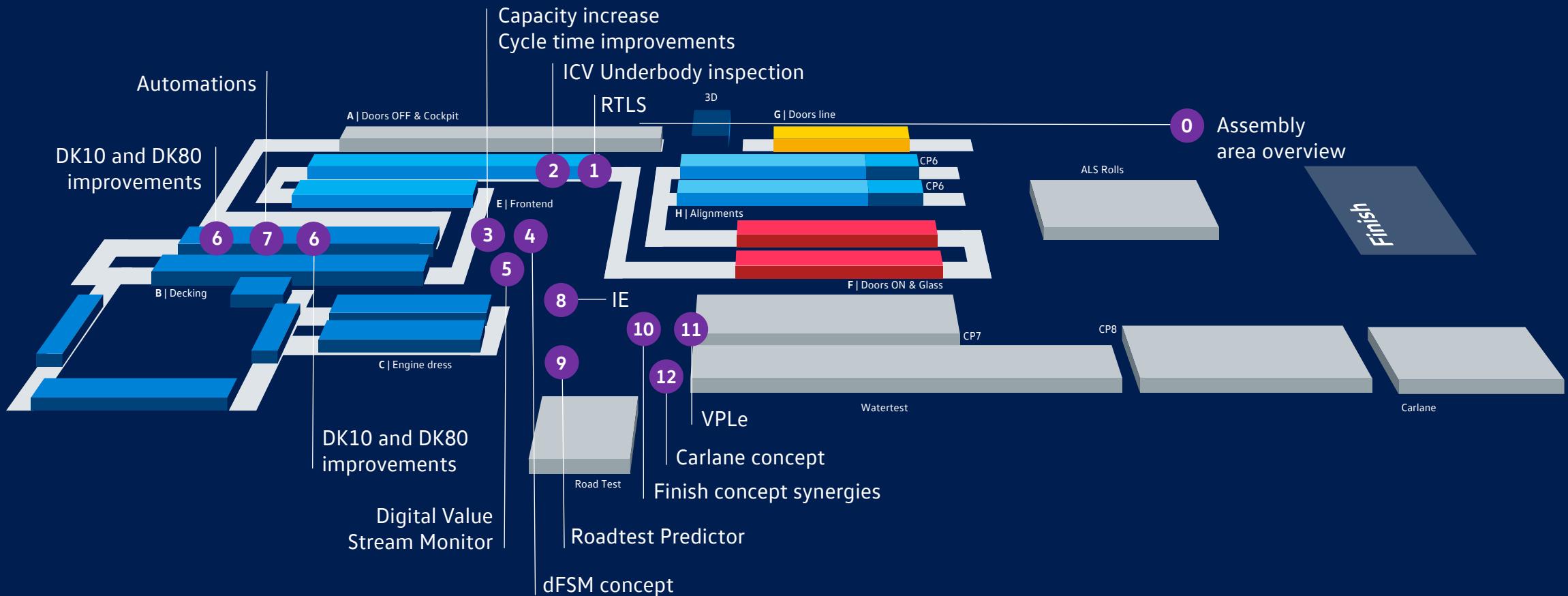
After

Description

- Capacity 48 jph
- Optimizations "Balancing" applications
- Capacity improve 6% (50 jph)

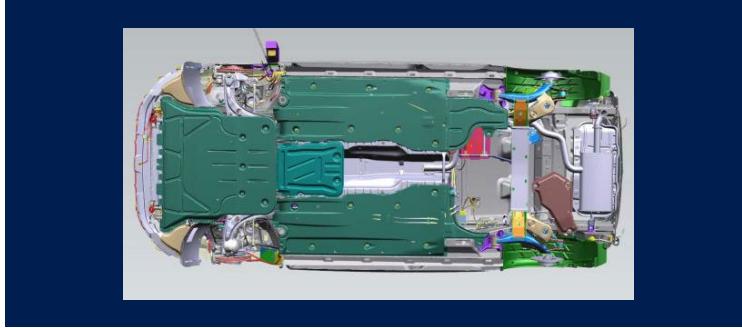
	Facts
Area	Paintshop 7
Saving	Capacity
Investment	No investment
Implementation date	2022

Results and improvements


Productivity increase

FACTORY

Assembly
Walkaround


ICV Underbody inspection

Industrial Computer Vision

Before

After

Description

- Visual check of the Underbody
- Use of cameras and software with AI to identify abnormal deviations in the Underbody
- Automatic input in FIS eQS
- Roll-out in 2023/2024 for Body, Paint and Assembly
- 58 opportunities identified in Production

Results and improvements

Improve of DLQ ZP6 & Road Test, Field Complaints reduction

Facts	
Area	Assembly 2
Saving	128 T€/y
Investment	2 T€
Implementation date	June 2023

Assembly Capacity Increase

from 890 UPD to 903 UPD to 912 UPD

Before

890 UPD

After

912 UPD

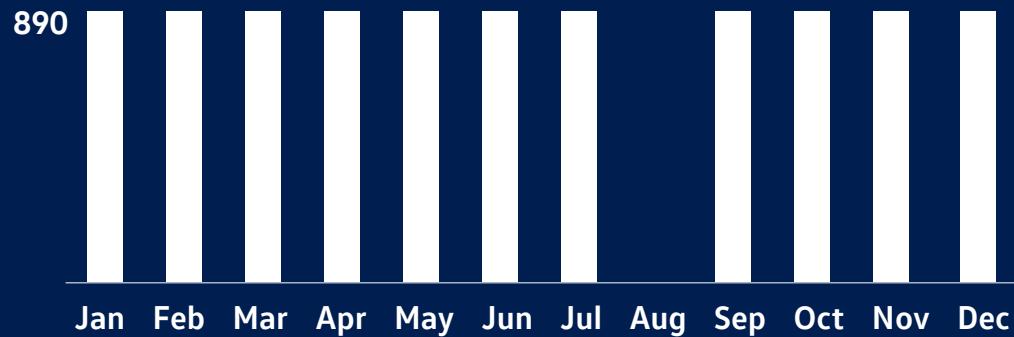
Description

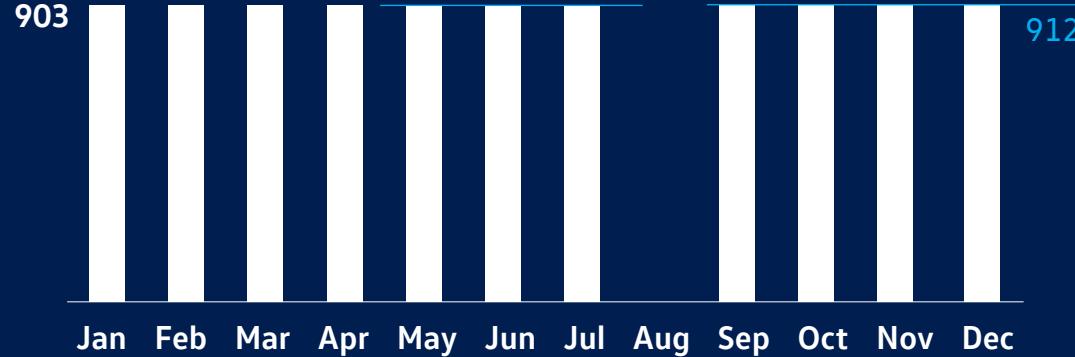
- Complete year of 2022 with 890 UPD production between T-Roc and MPV models.
- With the EOP of the MPV, the potential for daily capacity increase was identified: **step1 to 903 UPD** on the beginning of 2023 and **step2 to 912 UPD** on week 19 of 2023.
- All actions were performed by Assembly and Industrial Engineering teams and required no additional resources.

Results and improvements

Daily output increase with no additional resources

Facts	
Area	Assembly 3
Saving	TBD
Investment	0€
Implementation date	08.05.2023

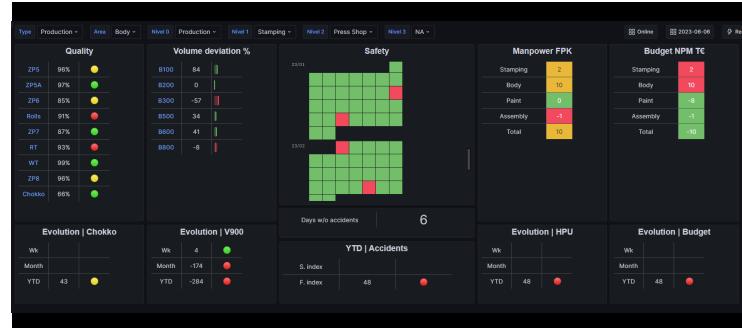



Assembly Capacity Increase

from 890 UPD to 903 UPD to 912 UPD

2022 UPD

After


dSFM

Digital Shopfloor Management

Before

After

Description

- KPI data collection and input is done manually in the Shop Floor Management boards for each team
- Automatic KPI data collection with no manual interaction
- Online information till the team level
- Business Intelligence tool for data analysis

	Facts
Area	Production Assembly Pilot 4
Saving	-
Investment	10 T€
Implementation date	2023

Results and improvements

Visual management with digital tool to identify abnormal deviations and improve time of response in the shopfloor

DK10 | Cycle time improvements

Decking

Before

After

Description

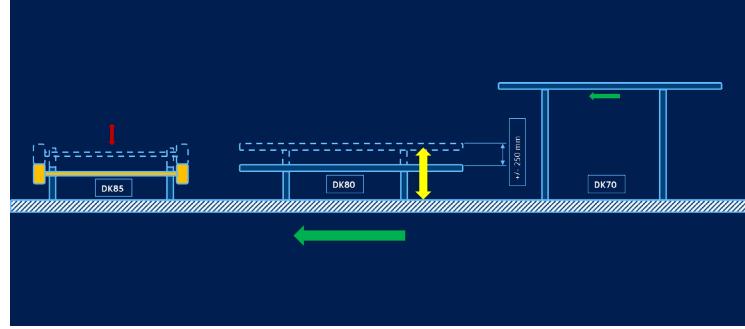
- After frames in position Lift table moves upwards only a few centimeters to allow the trolley to go into the station.
- Table will go further upwards only after the trolley reaches position and Down holders are in the car
- As soon as the trolley reaches the Decking position, the lift table can go all the way upwards while the down holders are moving towards the car.
- This way avoiding loosing time in waiting periods.

Results and improvements

Total saving of 4 seconds per produced car

	Facts
Area	Assembly 6
Saving	4 sec
Investment	0€
Implementation date	2022

DK80 | Cycle time improvements


Decking

Before

After

Description

- DK80 lift table travels up and down to deliver the frame to next station.
- Course distance of 800 mm
- Lower DK80 table only the necessary to allow the exit movement of the frame from Dk 80 to DK 85 (less 250 mm of stroke)

	Facts
Area	Assembly 6
Saving	4 sec
Investment	13 T€
Implementation date	2022

Results and improvements

Cycle time reduction in DK80 of 4 seconds resulting from less travel movement from the table

Finish concept synergies

Before

No graphics available

After

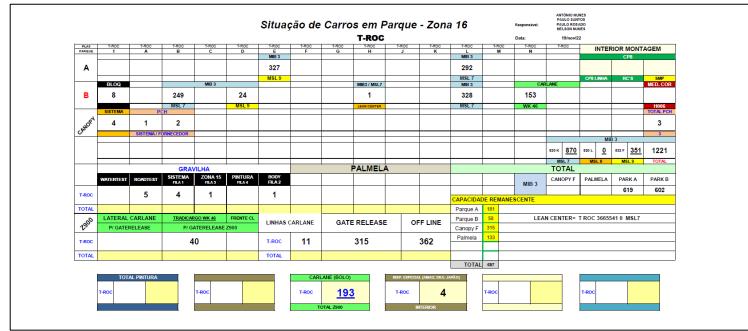
Description

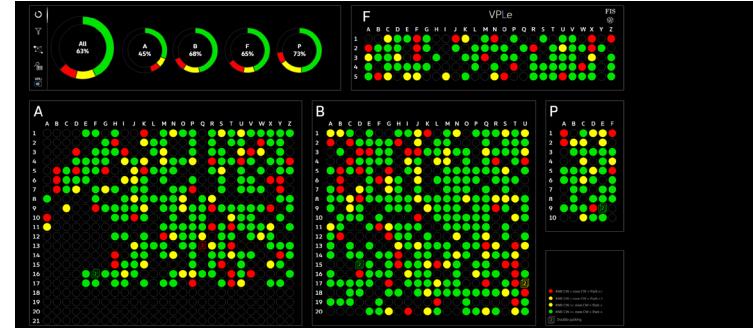
- Assembly overall strategy
- Dedicated strategy in Finish division in Assembly Area

	Facts
Area	Assembly 10
Saving	-136 FPK -5 IPK
Investment	NA
Implementation date	2018 YTD

Results and improvements

Assembly strategy for streamlining processes, inspection & rework, optimizing manpower & ensuring sustainable quality results


**Check this
Best Practice
LIVE**


VPL.e

Vehicle Prioritization & Location exterior

Before

After

Description

- No external parking traceability
- Manual counting on the exterior
- Counting and analysis loops done by 1 technician

- External park stations mapping & coding with thresholds & color codes with an online visualization via webpage
- Clear visualization & identification of the location of each car and real-time prioritization and traceability in external parks

Results and improvements

Positive impact on main KPI's: MDLZ, Schleppen, Program Achievement. Park reconfiguration with ≈ 200 extra slots

Facts	
Area	Assembly 11
Saving	128 T€/y
Investment	40 T€
Implementation date	June 2023

Carlane Concept

Car cover process optimization

Before

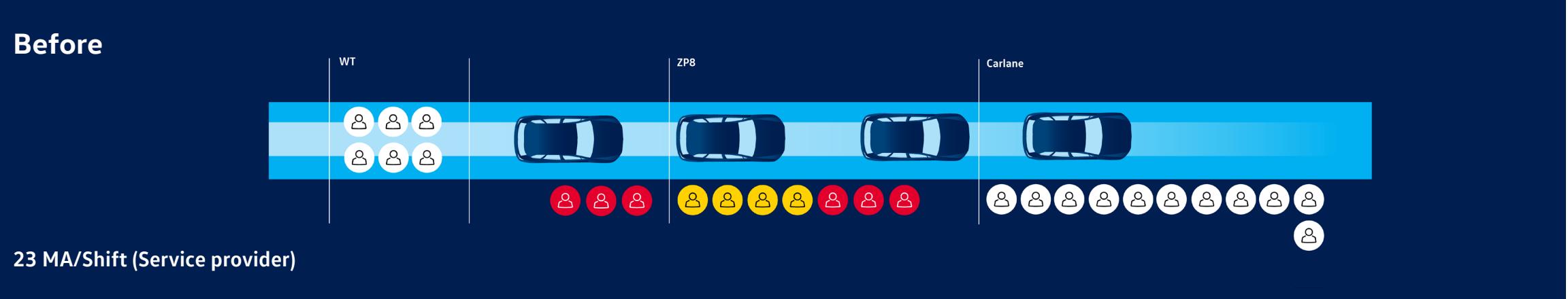
After

Description

- Offline Car cover with wrap guard done in Carlane after ZP8 with car driving between stations
- The car process is done by 17MA (car cover) and 6 MA dedicated to drive the cars, this service is provided by an external supplier.
- Inline Car cover with wrap guard done in ZP8 line
- Work stations rebalance
- No driving
- Complete inline process

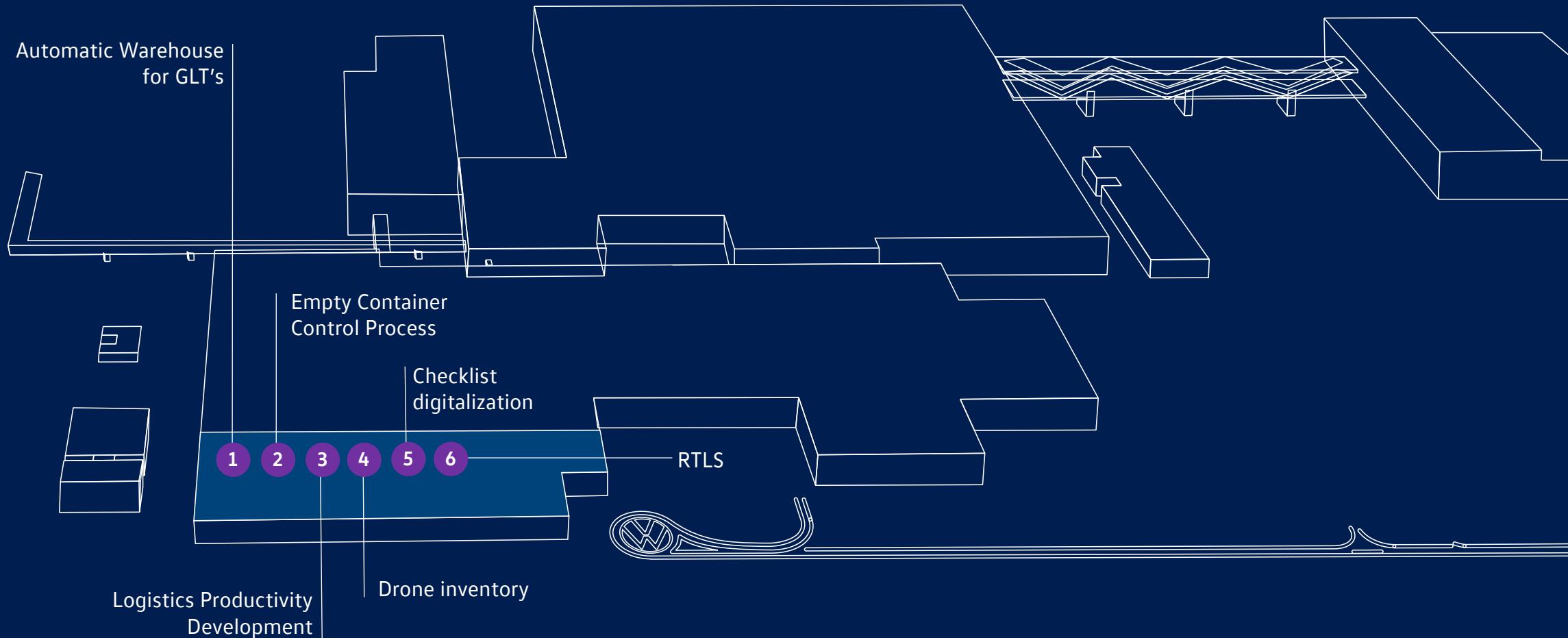
Results and improvements

Optimization of 8 MA per Shift



Facts	
Area	Assembly 12
Saving	533 T€/y
Investment	130 T€
Implementation date	2023

Carlane Concept

Car cover process optimization



FACTORY

Logistics
Walkaround

AGL

Automatic Warehouse for GLT's

Before

After

Description

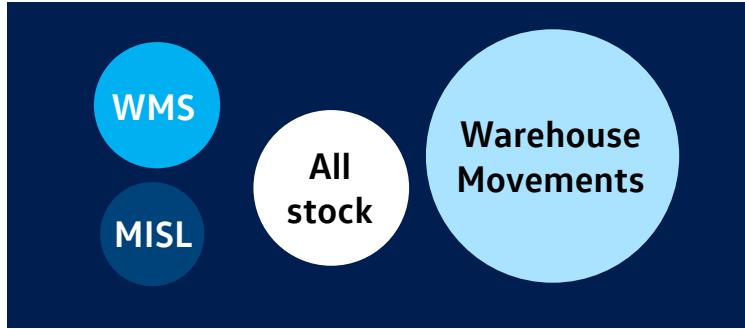
- Manual Warehouse
- All GLT's stored in block storage.
- Inefficient space usage
- External Warehouse needed to store material

- Automatic Warehouse
- Full automation with narrow aisles and shelvestorage
- Smart Warehouse Management System connected to equipment and LOGIS
- Higher storage capacity
- Increased productivity

Results and improvements

Increase of warehouse positions: external warehouse capacity no longer required; less shelve damages; reduced handling and increased integrity

	Facts
Area	Logistics 1
Saving	0,9 Mio €
Investment	4,2 Mio €
Implementation date	31.03.2023



AGL | Big Data

Automatic Warehouse for GLT's

Before

After

Description

- Raw and unstructured data from multiple sources
- Various sources of raw data not consolidated and transformed into information
- Qlik Sense Dashboard
- Various data sources consolidated in one dashboard
- Operation overview with multiple KPI's
- Analysis for potential optimizations and performance enhancements

Results and improvements

Easy to use and user-friendly information in one source; warehouse performance enhancement and insights for optimizations

	Facts
Area	Logistics 1
Saving	TBD
Investment	N/A
Implementation date	31.03.2023

Empty Container Control Process

Empties Management System

Before

Check next one-pager for graphics detail

After

Check next one-pager for graphics detail

Description

- The processes are manually managed, and counting is made once a day, with the support of excel files and others "domestic" applications.
- The lack of process monitoring and traceability of empty packages potentializes errors and extra costs.
- System with online inventory and online overview of all actions required in the process (cleaning, storage, loads, documentation) and all stock of empty packaging.

Results and improvements

BNK Reduction; inventories online; packaging tracking avoiding errors; reporting and statistics available online and processes standardized

Facts	
Area	Logistics 2
Saving	158.075 €
Investment	90.000€
Implementation date	Oct. 2022

Empty Container Control Process

Empties Management System

Before

LOZ

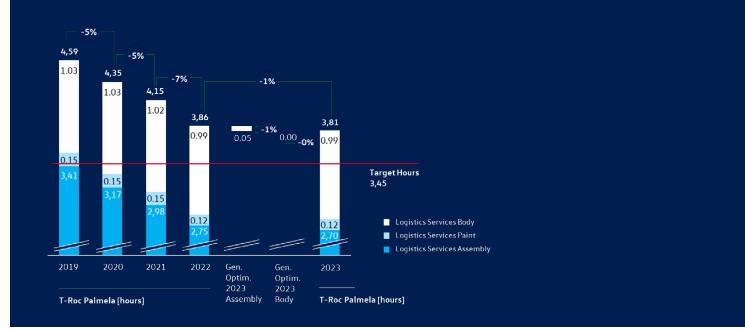
EPC

After

LOZ

EPC

Logistics Productivity Development


Below
30 hours

Before

No graphics available

After

Description

- All Logistics Improvements/Implementations was followed individually by the departments
- Following Logistics Improvements/Implementations in a systematic way using the universal tool "Harbour Report"

	Facts
Area	Logistics 3
Saving	NA
Investment	NA
Implementation date	2019

Results and improvements

Since 2019 improvement of 17% with 0.78 hours per car (4.59 hours/car to 3.81 hours/car)

Inventory by drone LOZ Assembly

Before

After

Description

Facts	
Area	LOZ Assembly 4
Saving	211,9 T€ (5 years)
Investment	141,7 T€
Implementation date	27.04.2022

- Visual checking inventory operated at height level
 - Visual comparison of packaging references versus printed stock list
 - Possibility of manual errors
 - Operation with Order Picker Truck performed at high levels
- Scanned Data inventory operated at ground level
 - Data comparison of scanned packaging references versus stock list
 - Increase of data transparency and accuracy
 - Operation with drone piloted at the ground level
 - Data collected in loco and analyzed afterwards
 - 1 drone, 1 scan system and 1 tablet

Results and improvements

Increase of data transparency and accuracy; reduction of operations at high levels and reduction of BNK

Checklist Digitalization

TCC and unloading Areas | LOZ, Body, Paint

Before

After

Description

Area	Facts
Logistics	5
Saving	6.800 €
Investment	18.697€
Implementation date	Sep. 2022

- Folder Storage. The company must keep all documents, due to legal requirements, for 15 years.
- Use of multiple rooms with limited storage.
- Difficult and time-consuming documentation search
- Documents Digitalization
- Documents are captured and kept on an online system.
- Document consultation becomes easier, faster and reliable.
- Less time consumable process.

Results and improvements

Reduction in CO₂ (879Kg) and water (5.300.000L); release of physical space used to keep documents, reduction of SGK and elimination of costs to maintain actual situation

RTLS

Real Time Location System for Line Feeding Assets

Description

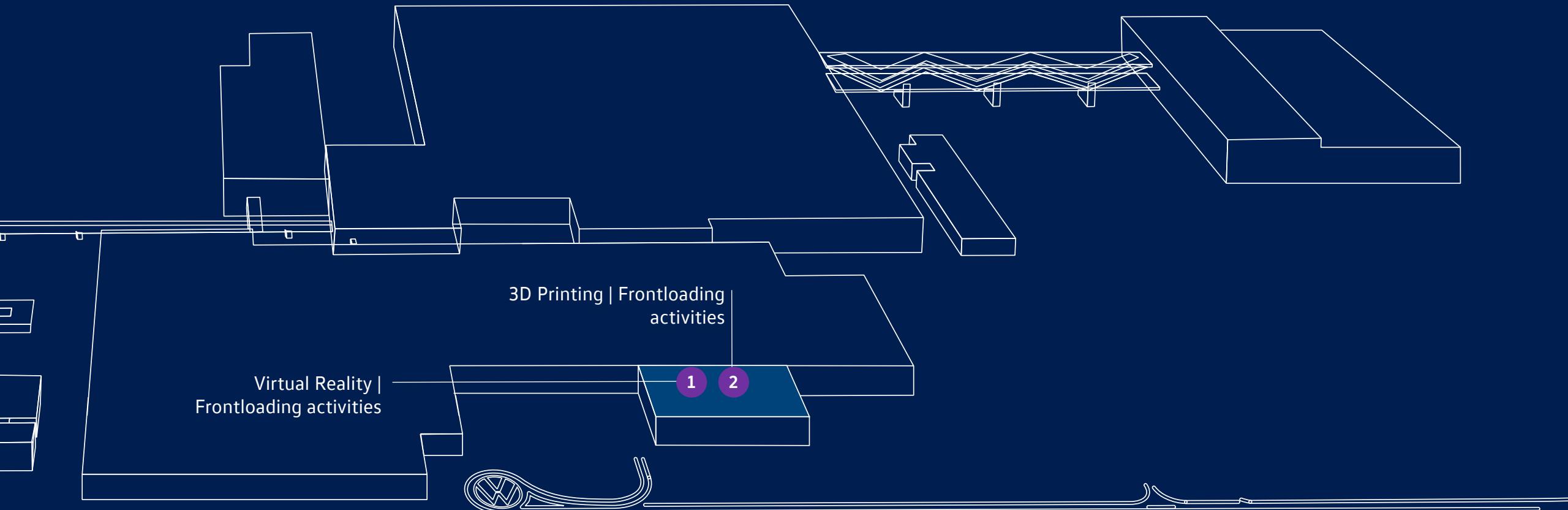
- With Real Time Location System (RTLS), AGV's and Tugger Trains operating on the corridors of the shop floor, are fully visible and traceable in real time. The positioning data of the line feeding equipment is used for the monitoring software to manage traffic between AGV's and Tugger Trains, i.e.: manage traffic in constrained areas like crossroads.

This last point is particularly important because without RTLS, it wouldn't be possible to have AGV's and Tugger Trains operating in the crossroad shown in the pictures above.

Results and improvements

Line feeding asset management in common environments between AGV's and Tugger Trains. RTLS enabled fluid operation between these assets which allows for further dissemination of AGV's (automation) in the shopfloor at Volkswagen Autoeuropa.

Facts	
Area	Logistics 6
Saving	90 Tsd. €
Investment	87 Tsd. €
Implementation date	2021



FACTORY

Pilot Plant
Walkaround

Virtual Reality

Frontloading activities for product feasibility studies

Before

After

Description

- The validation of product related changes in an early stage of the development phase can only be possible via the regular CAD systems or by means of prototype parts that are very costly and very difficult to manufacture. Under these conditions a quick and accurate validation from the production site is barely achievable.
- With the usage of Virtual Reality the validation of product related changes can be made in an immersive way, thus enhancing the speed and accuracy of the validation. This means that proper feedback from the production site can be quickly integrated in the product optimization cycles throughout the complete development phase.

Results and improvements

Shorter reaction time between development and manufacturing (frontloading). Less need of costly prototyping tools and/or parts in order to validate product related changes.

	Facts
Area	Pilot Plant 1
Saving	-
Investment	49,6 T€
Implementation date	2020

3D-Printing

Frontloading activities for product feasibility studies

Before

After

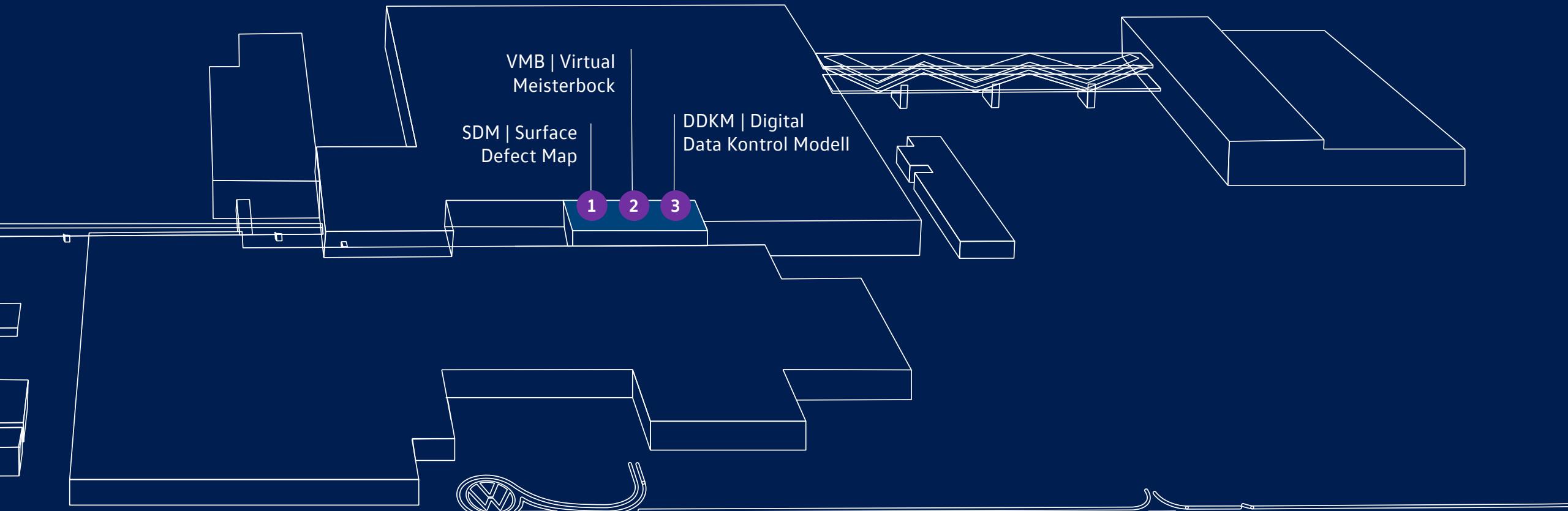
Description

- The validation of product related changes in an early stage of the development phase can only be possible via the regular CAD systems or by means of prototype parts that are very costly and very difficult to manufacture. Under these conditions a quick and accurate validation from the production site is barely achievable.
- With the usage of 3D-Printing the validation of product related changes can be easily made through 3D-printed hardware parts, thus enhancing the speed and accuracy of the validation. This means that proper feedback from the production site can be quickly integrated in the product optimization cycles throughout the complete development phase.

Results and improvements

Shorter reaction time between development and manufacturing (frontloading). Less need of costly prototyping tools and/or parts in order to validate product related changes.

	Facts
Area	Pilot Plant 2
Saving	-
Investment	21,4 T€
Implementation date	2019 (newest)



FACTORY

Measuring
Walkaround

SDM | Surface Defect Map

Replace surface evaluation manual process

Before

After

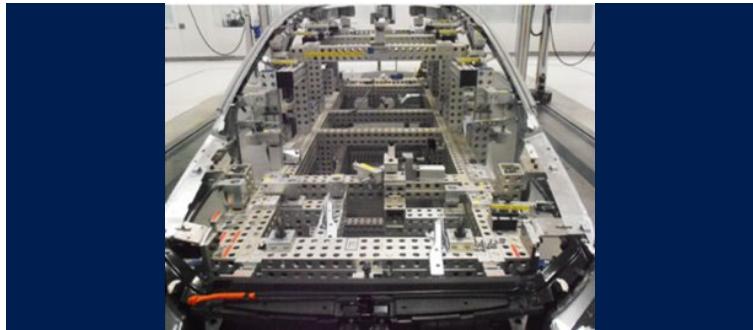
Description

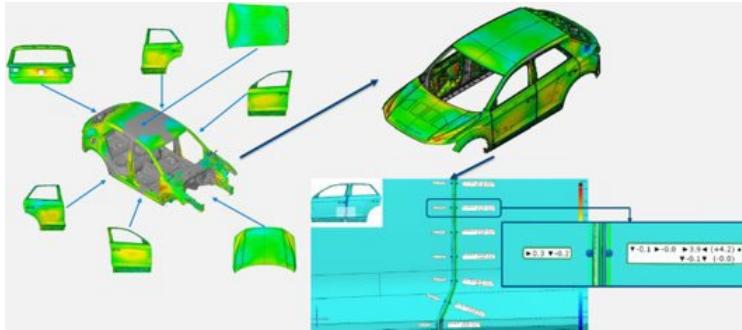
- Manual process that uses an abrasive stone to check defects on outer sheet metal parts
- The manual process is digitally simulated, allowing geometric deviations and surface quality to be obtained with a single scan.

	Facts
Area	Quality Measuring Room 1
Saving	- 4 PJ in Body - 140T€/year
Investment	120 Tsd €
Implementation date	2021

Results and improvements

Faster process. From manual to automatic.




VMB | Virtual Meisterbock

Step 1 Static Model

Before

After

Description

- Manual assembly of sheet metal subgroups in Meisterbock structure (1 month)
- Create Virtual Meisterbock model using digitalizations from optical measuring machines to check gaps and flushes between sheet metal parts (1 day)

	Facts
Area	Quality Measuring Room 2
Saving	-
Investment	-
Implementation date	2021

Results and improvements

Faster process, results and part evaluations.

DDKM | Digital Data Kontrol Modell

Replacement of physical model

Before

After

Description

- Physical model of a car produced in Volkswagen Autoeuropa. Physical model had only one version and each design change had to be machined with a cost.
- New virtual/digital version that can be easily presented and updated.

	Facts
Area	Quality Measuring Room 3
Saving	- 300Tsd € each new model
Investment	115 Tsd€
Implementation date	2017 / 2022 2023 New Model

Results and improvements

Cost avoidance for new projects. Faster process. Digital product improvement.

All data and information included by Volkswagen Autoeuropa in this document will be only used for the limited purposes therein mentioned.

Automotive Lean Production undertakes to respect privacy, security and integrity of the data collected and to use reasonable organizational and technological methods to transmit and store your data securely in compliance with the applicable Data Protection Law and Regulations.

[Return to index](#)

Lean & sustainable

Thank you

